Indian Speedometer and Body Control Module Service Tool Users Guide

Installing speedometer software to your computer

- 1. Go to the Indian Motorcycle Website: WWW. Indianmotorcycle.com
- 2. Log in to Service Central.
- 3. Go to Special Tools located on the far left side

4. Click on the link under Software Downloads called "Indian Service Tool Software (V1.5)"

5. The following screen should show up

- 6. Click on "save". Put these files in a location that you want to use.
- 7. Un zip the files and install on your computer

Connecting Motorcycle to your Computer

- 8. You will need special tool Speedo diagnostic CAN ADAPTOR PN# 90000000
- 9. Connect special tool to USB port on your computer
- 10. Open tool on your computer

Connecting to the Motorcycle

- 1. Follow above steps for installing and/ or connecting special tool to your computer
- 2. Ensure battery is fully charged.
- 3. Remove side panels for access to fuses and OBDII connector
- 4. Connect service tool to the OBDII connector on right side of motorcycle
- 5. Turn ignition switch to the ON position
- 6. Manually ensure motorcycle is in neutral

Identifying software version and build date

1. Click on "Get Software info" and read screen

-Gauge Software	
<u>Version</u>	Build Date
G	et Software Info

Note: Ensure the speedometer has completed the self test cycle prior to identifying software information

Loading the Calibration File

- 1. Go to the Indian Motorcycle Website: WWW. Indianmotorcycle.com
- 2. Log in to Service Central.
- 3. Go to Special Tools located on the far left side

4. Go to the Software Download section and click on the link called "Speedometer Calibration File (v X.X)"

5. Copy file to your computer (in a place you can find easily)

Re-Flashing Speedometer

Warning: Neutral Light is no longer a valid indicator of the gear selection when the ECM Fuse is removed. You must manually check that the bike is in neutral before starting this test!

Remove 7.5 amp ECM fuse located in upper center of right side fuse block

- 1. You will first need to "load" the latest file see above
- 2. Open the Indian Service Gauge Software tool
- 3. Connect your computer to the Motorcycle
- 4. Click on "Firmware" tab at the top of the tool screen

🔛 Indian Gauge Service Tool v1.	.5
Tools Firmware	
Gau Load File	Diagnostic Mode
<u>Version</u> <u>Build Date</u>	Disabled
Get Software Info	Switch Status
	Netural
Gauge Pointer Calibration	Clutch
Position	Gauge Inputs
Save Pointer Calibration	Low Oil
Reset Pointer Calibration	Low Fuel
Gauge Firmware Update	Lamp Failure Warnings
Program Flash	TURNS: DISABLED
	SPTLT: ENABLED
File Information	HDLT: ENABLED
ivo nie currentiy loaded	BRKLT: ENABLED
No nie conerky IDadeu	BRKLT: ENABLED

5. Click on "Load File" and upload the latest calibration file that you previously loaded.

- 6. Click on "Open" file once you have selected the correct file
- 7. The file information will show up on the bottom left screen

G	auge Firmware Update
	Program Flash
	k -
	<u>File Information</u> Indian_DIG_v4.2.s19 3/18/2009 8:27:07 PM

- 8. Click on "Program Flash" and it will guide you through the install
- 9. Once the reflash is complete, the following screen will pop up on your computer

Tool 🔀	Indian Gauge Service
ssful	Program Transfer Succes
	ОК
ssful	Program Transfer Succes

10. See "Identifying Calibration" to ensure the motorcycle has the latest calibration.

Gauge Software		
Version	<u>Build Date</u>	
4.2	03/18/09	
Get	Software Info	

Note: You may have to exit the program for the Speedometer Gauge Service tool and restart it for latest calibration to be viewed by tool.

Gauge Pointer Calibration

Warning: Neutral Light is no longer a valid indicator of the gear selection when the ECM Fuse is removed. You must manually check that the bike is in neutral before starting this test!

Remove 7.5 amp ECM fuse located in upper center of right side fuse block

The gauge pointer calibration tool can be used to re-set your speedometer needle at the zero MPH or resting position. The tool can only be used to raise the needle to the zero position and *not to lower it.*

Gauge Pointer Calibration	
Position	
• • •	
Save Pointer Calibration	
Reset Pointer Calibration	

Adjusting

To adjust the needle position, move the tab on the bar to the desired position while looking at the speedometer needle on the motorcycle. The corresponding adjustment value will be shown on the right side of the screen.

Gauge Pointer Calibration		
Po	<u>sition</u>	
•		▶ 20

Saving

To save the adjusted position, click on the Save Pointer Calibration button

Save Pointer Calibration

Reset to Factory Settings

To reset the speedometer needle to the factory settings, click on the Reset Pointer Calibration button

Reset Pointer Calibration

Note: The throttle position on the tab bar will remain at the new settings even after new settings have taken affect.

Switch Status

The Neutral and Clutch switch can be checked using the Speedometer Gauge Tool. Both switches are direct inputs and can be activated or deactivated and seen on the tool.

NOTE: The 7.5amp ECM fuse must be installed for this to work

Neutral Switch

1. Place motorcycle in Neutral. The status switch will illuminate green.

2. Put the motorcycle in gear. The status switch will no longer illuminate

Clutch Switch

3. Activate clutch by pulling on clutch lever. The status switch will illuminate green.

Switch Status	
Netural	
Clutch	

4. Let go of clutch lever. The status switch will no longer illuminate

Switch Status		
	Netural	
	Clutch	

Gauge Inputs

The Speedometer Tool will allow the user to see the gauge inputs: the "mode" switch, "low oil" signal and "low fuel" signals that are being sent to the speedometer.

Switch

5. To activate the mode switch pull in the switch on the back of the left hand control. When the mode switch is activated, the input will illuminate green

6. When the switch is not activated, it will no longer illuminate

Low Oil

7. The Low Oil switch activated when a signal is sent to the speedometer. This will usually activate when the motorcycle is not running. This will illuminate green when activated

- Gauge Inputs
adage inpate
Switch
Low Oil
Low Fuel

8. When the switch is not activated, the light will no longer illuminate

Gauge Inputs	
Switch]
Low Oil]
Low Fuel]

Low Fuel

9. The low fuel input will illuminate when the signal from is sent to the speedometer.

Gauge Inputs	
Switch]
Low Oil]
Low Fuel	
	_

Lamp Failure Warnings

The Speedometer Tool allows the user to enable or disable the lamp failure warnings seen in the speedometer by the user.

TURNS: This is a warning that will display "VTURNS" when any of the turn signal bulbs have failed.

Note: Body Control Module Version 3 or higher must be present for this function to work properly. See *Body Control Module Information* to determine software level

SPTLT: This is a warning that will display "VSPTLT" when either of the spot lamp bulbs has failed.

Note: This should be disabled for any model that does not have spot lamps. If this is not disabled, then a spotlamp fault will activate when if headlight fails.

HDLT: This is a warning that will display "VHDLT" when the headlight bulb (high or low beam) has failed.

BRKLT: This is a warning that will display "VBRKLT" when the tail light bulb (brake light or tail light) has failed.

Note: Speedo software version 4.9 must be installed for all lamp failures to display with specific descriptions (as stated above) on speedometer screen.

ENABLE or DISABLE Lamp Failure Warnings

To enable or disable any of the above lamp failure warnings click on the specific warning key. Below is shown an example of the TURN SIGNAL and SPOT LAMPS disabled and the HEADLIGHT and BRAKE LIGHT enabled.

_ar	np Failure Warnings
	TURNS: DISABLED
	SPTLT: DISABLED
	HDLT: ENABLED
	BRKLT: ENABLED

Diagnostic Mode

The body control module diagnostics can be accessed using the Speedometer Diagnostic Tool. The EMC fuse must be removed before using the diagnostic mode

10. Enable Diagnostic Mode by pressing the enable button

D	iagnostic Mode
	Disabled

Note: You may have to exit the program for the Speedometer Gauge Service tool and restart the tool.

11. A screen will appear to remind you to remove the ECM fuse.

Warning: Neutral Light is no longer a valid indicator of the gear selection when the ECM Fuse is removed. You must manually check that the bike is in neutral before starting this test! 12. Remove 7.5 amp ECM fuse located in upper center of right side fuse block

13. The Speedometer Diagnostic Tool will expand to the right side.

Module Information					
Gauge Serial I	lumber	BCM Serial Nu	<u>imber</u>	BCM Hard	ware Rev
Get Info					
Gauge Mfg Da	te Code	BCM Mfg Date	<u>Code</u>	BCM Soft	ware Rev
- RCM Inpute		nute			
Input State		puis State	Current	Alarm	Querrido
0 · Brake Switch		Engine Run #1			Off
1 - Spot Light Switch	0 1·E	Engine Run #2		Õ	Off
2 - Engine Run Status	0 2.9	Starter Solenoid	0	Ō	Off
3 - Start Status	0 3·1	furn Signal		Ō	Off
4 - Start Switch	0 4 · H	lead Light		\odot	Off
5 - Engine Run Switch	○ 5 · 6	Brake Light	0	\odot	Off
6 - High Beam Switch	6-9	Spot Light	0	\odot	Off
○ 7 · N/A	07.4	Auxiliary #1	0	0	Off
	0 8.4	Auxiliary #2	0	0	Off
	○ 9 · E	Engine Run Request		0	Off

Body Control Module Information

To obtain module information by clicking "Get Info" in the upper left corner of the expanded speedometer diagnostic tool.

- Module Inform	nation		
	Gauge Serial Number 276	BCM Serial Number 431	BCM Hardware Rev 0
Get Info	Gauge Mfg Date Code 9138	BCM Mfg Date Code	BCM Software Rev 2

Body Control Module Inputs

The Body Control Module diagnostics allow the user to view the status of the inputs to the body control module by activating and de-activating each input.

BCM Inputs
Input State
0 - Brake Switch
1 - Spot Light Switch
2 - Engine Run Status
3 - Start Status
4 - Start Switch
5 - Engine Run Switch
6 - High Beam Switch
○ 7 · N/A

Brake Switch

The input state will illuminate green when either brake is engaged.

Spot Lamp Switch

The input state will illuminate green when the spot lamp switch is engaged or in the ON position

BCM Inputs
Input State
0 - Brake Switch
😑 1 - Spot Light Switch
🔵 2 - Engine Run Status
3 - Start Status
4 - Start Switch
5 - Engine Run Switch
🔵 6 - High Beam Switch
○ 7 · N/A

Note: This feature is disabled for models that do not come with spot lamps.

Engine Run Status

This feature will be available on future models. This Input can be checked using the diagnostic tool built into the speedometer.

Start Status

This feature will be available on future models. This Input can be checked using the diagnostic tool built into the speedometer.

Start Switch

The input state will illuminate green when the starter button is engaged

BCM Inputs
Input State
 0 - Brake Switch
1 - Spot Light Switch
2 - Engine Run Status
3 - Start Status
😑 4 - Start Switch
🔵 5 - Engine Run Switch
🔵 6 - High Beam Switch
○ 7 · N/A

Engine Run Switch

This input state will illuminate when the Engine Run Switch is in the RUN position

High Beam Switch

The input state will illuminate green when the High/ Low Beam switch is in the High position

Note: If the unit is started when in body diagnostic mode, the headlight will not turn on automatically unless over ridden by the user

Body Control Module Outputs

The body control module diagnostics tool will override the outputs to the body control module and have the ability to turn on and off outputs from the body control module. The body control module diagnostics will also show the current for each output where applicable.

BCM Outputs			
Output State	Current	Alarm	Override
🔘 0 - Engine Run #1	0	\odot	Off
🔵 1 - Engine Run #2	0	\odot	Off
🔘 2 - Starter Solenoid	0	\odot	Off
🔵 3 - Turn Signal	0	\odot	Off
🔘 4 - Head Light	0	\odot	Off
🔵 5 - Brake Light	0	\odot	Off
🔘 6 - Spot Light	0	\odot	Off
🔘 7 - Auxiliary #1	0	\odot	Off
🔘 8 - Auxiliary #2	0	\odot	Off
9 - Engine Run Request		0	Off

ALARM

• If the override is activated and the output state does not activate, then a red dot will illuminate (along with the green dot) to show that there is a problem with the override.

For example, on a model that does not have spot lamps (2010 Dark Horse). If the spot lamp override is turn on you will see the following

BCM Outputs			
Output State	Current	Alarm	Override
🔘 0 - Engine Run #1	0	0	Off
🔵 1 - Engine Run #2	0	\odot	Off
🔘 2 - Starter Solenoid	0	\odot	Off
🔵 3 - Turn Signal	0	\odot	Off
🔵 4 - Head Light	0	\odot	Off
🔘 5 - Brake Light	0	\odot	Off
😑 6 - Spot Light	0	•	
🔘 7 - Auxiliary #1	0	\odot	Off
🔘 8 - Auxiliary #2	0	0	Off
9 - Engine Run Request		0	Off

• The Alarm is also used to show a fault if the current expected of that output is out of range. This can be from a short circuit or it can be from pulling too much current that is not short circuited.

For example, if a 100 watt headlamp bulb is used in place of the OE bulb, the output would fault the alarm due to the headlight output would be out of range

Engine Run #1

WARNING: YOU MUST DISCONNECT THE FUEL LINE BEFORE PERFORMING THIS TEST!

Engine Run #1 is the output that supplies 12V power to the fuel pump, injectors and ignition coil.

BCM Outputs			
Output State	Current	Alarm	<u>Override</u>
🔵 0 - Engine Run #1	4.6	\odot	<u>[în]</u>
🔵 1 - Engine Run #2	0	\odot	Off
🔘 2 - Starter Solenoid	0	\odot	Off
🔵 3 - Turn Signal	0	\odot	Off
🔵 4 - Head Light	0	\odot	Off
🔵 5 - Brake Light	0	\odot	Off
🔘 6 - Spot Light	0	\odot	Off
🔘 7 - Auxiliary #1	0	\odot	Off
🔘 8 - Auxiliary #2	0	\odot	Off
9 - Engine Run Request		0	Off

Current value range: Running 3.5-4.2 amps

Not running 4-6 amps

Note: Do not leave the override in the ON position for more than 10 seconds.

Note: You will hear the fuel pump when this is activated

Engine Run #2

Engine Run #2 is the output that supplies 12V power to the oxygen sensor heaters

- BCM Outputs			
Output State	Current	Alarm	Override
0 - Engine Run #1	0	0	Off
🔵 1 - Engine Run #2	0	\odot	
🔘 2 - Starter Solenoid	0	\odot	Off
🔵 3 - Turn Signal	0	\odot	Off
🔵 4 - Head Light	0	\odot	Off
🔵 5 - Brake Light	0	\odot	Off
🔘 6 - Spot Light	0	\odot	Off
🔘 7 - Auxiliary #1	0	\odot	Off
🔘 8 - Auxiliary #2	0	\odot	Off
9 - Engine Run Request		0	Off

Current value range: 0-4.5amps

Note: The current value is only seen when the bike is running.

Starter Solenoid

The starter solenoid will activate the starter when it is overridden. The pop up screen will state to have the bike in neutral or the clutch activated.

Warning: Neutral Light is no longer a valid indicator of the gear selection when the ECM Fuse is removed. You must manually check that the bike is in neutral before starting this test!

BCM Outputs			
Output State	Current	Alarm	<u>Override</u>
🔘 0 - Engine Run #1	0	\odot	Off
🔵 1 - Engine Run #2	0	0	Off
🔵 2 - Starter Solenoid	11	\odot	
🔵 3 - Turn Signal	0	\odot	Off
🔵 4 - Head Light	0	\odot	Off
🔵 5 - Brake Light	0	\odot	Off
🔘 6 - Spot Light	0	\odot	Off
🔘 7 - Auxiliary #1	0	\odot	Off
🔘 8 - Auxiliary #2	0	0	Off
9 · Engine Run Request		0	Off

The starter solenoid will be activated and the starter will engage

The current range: 10-12 amps

Turn Signal

Turn Signal is a flasher output that supplies both the turn signal and hazard switch. To activate this function engage either one of the turn signals or the hazard switch. The BCM turn signal output will override the flash function of the turn signals or hazard switch.

BCM Outputs			
Output State	Current	Alarm	<u>Override</u>
🔘 0 - Engine Run #1	0	\odot	Off
🔵 1 - Engine Run #2	0	\odot	Off
🔘 2 - Starter Solenoid	0	\odot	Off
🔵 3 - Turn Signal	3.8	\odot	[[n]
🔵 4 - Head Light	0	\odot	Off
🔵 5 - Brake Light	0	\odot	Off
🔘 6 - Spot Light	0	\odot	Off
🔘 7 - Auxiliary #1	0	\odot	Off
🔘 8 - Auxiliary #2	0	\bigcirc	Off
9 - Engine Run Request		0	Off

The current range:	Turn Signa	als 3-5amps
	Hazards	6-10amps

Head Light

The Headlight override will turn the head light. The low will be default. The high beam can be switched on using the body control module inputs (see above)

Low Beam

BCM Outputs			
Output State	Current	Alarm	<u>Override</u>
🔘 0 - Engine Run #1	0	\odot	Off
🔵 1 - Engine Run #2	0	\odot	Off
2 - Starter Solenoid	0	\odot	Off
🔵 3 - Turn Signal	0	\odot	Off
🔵 4 - Head Light	4.6	\odot	On
🔵 5 - Brake Light	0	\odot	Off
6 - Spot Light	0	\odot	Off
🔘 7 - Auxiliary #1	0	\odot	Off
🔘 8 - Auxiliary #2	0	0	Off
9 - Engine Run Request		0	Off

Current Range: 3.8-4.8 amps

High Beam

BCM Outputs			
Output State	Current	Alarm	<u>Override</u>
🔘 0 - Engine Run #1	0	\odot	Off
🔵 1 - Engine Run #2	0	\odot	Off
🔘 2 - Starter Solenoid	0	\odot	Off
🔘 3 - Turn Signal	0	\odot	Off
😑 4 - Head Light	5	\odot	
🔵 5 - Brake Light	0	\odot	Off
🔘 6 - Spot Light	0	\odot	Off
🔘 7 - Auxiliary #1	0	\odot	Off
🔘 8 - Auxiliary #2	0	0	Off
9 - Engine Run Request		0	Off

Current Range: 4.9-5.5 amps

Brake Light

This function will illuminate the brake light when activated

BCM Outputs			
Output State	Current	Alarm	<u>Override</u>
🔘 0 - Engine Run #1	0	\odot	Off
🔵 1 - Engine Run #2	0	\odot	Off
🔘 2 - Starter Solenoid	0	\odot	Off
🔵 3 - Turn Signal	0	\odot	Off
🔵 4 - Head Light	0	\odot	Off
😑 5 - Brake Light	1.6	\odot	
🔘 6 - Spot Light	0	0	Off
🔘 7 - Auxiliary #1	0	0	Off
🔘 8 - Auxiliary #2	0	0	Off
9 · Engine Run Request		0	Off

Current Range: 1.5-1.9 amps

Auxiliary #1

The auxiliary #1 is the rear power port located on the left side panel. The current range is 0-10amps when activated

Auxiliary #2

The auxiliary #2 is the front power port located on the right rear side of the head light cover. The current range is 0-3 amps when activated

Engine Run Request

Engine Run Request is a ground output that follows the Engine Run Switch input from above

OBD TOOL

The Speedometer diagnostic Tool can be used to view and clear codes. To access the OBD tool, go to Tools on the upper left corner. In the drop down menu, pick the OBD tool.

The following screen will pop up

🔀 OBD Tool 🛛 🚺	3
File	
Diagnostic Trouble Codes	1
Get Active Codes	
Clear Active Codes	

Active Codes

To see all active codes press *Get Active Codes* button on the bottom of the OBD Tool screen.

The following is a list of all OBD II codes :

DTC	Description
P0130	Front O2 Sensor circuit (resistance for sensor not in range)
P0150	Rear O2 Sensor circuit (resistance for sensor not in range)
P0110	Intake Air temperature sensor circuit (resistance not in range)
P0560	Battery voltage out of range
P0601	error Engine Temperature (front culinder) circuit
P0115	(resistance not in range)

P0120 P0351 P0352 P0201 P0202	Throttle Position Sensor circuit "A" Front Ignition coil circuit (ECU to Coil) Rear Ignition coil circuit (ECU to Coil) Injector 1 circuit (open), cylinder 1 Injector 2 circuit (open), cylinder 2 Front O2 sensor beater circuit (resistance pot in
P0135	range)
	Rear O2 sensor heater circuit (resistance not in
P0155	range)
DOADE	Manifold Pressure (MAP sensor) circuit (resistance
P0105	not in range)
P0604	(RAM) error
1 0001	Internal Control Moudle Read Only Memory (ROM)
P0605	error
P0335	Crankshaft Position sensor circuit (CPS)
P0505	Idle Air Control System (IAC)
P0606	ECM/PCM Processor
P0500	Vehicle Speed Sensor

Clear Codes

To clear all active codes press the *Clear Active Codes* button on the OBD Tool Screen

Clear Active Codes

ECU Data Monitor/ Simulation Tool

The ECU Data Monitor/ Simulation tool can be used to monitor data while the vehicle is running or simulate data. To access the tool, go to Tools on the upper left corner. In the drop down menu, pick the ECU Data Monitor/ Simulator tool.

Simulation

Warning: Neutral Light is no longer a valid indicator of the gear selection when the ECM Fuse is removed. You must manually check that the bike is in neutral before starting this test!

Remove 7.5 amp ECM fuse located in upper center of right side fuse block

A simulation can be ran using the *Data Simulation* button on the bottom left corner of the ECU Data Monitor/ Simulation Screen. The default setting is OFF.

Data Simulation	
Off	
O Offline	

A pop up screen warning will appear to remove the ECU Fuse

Warning: Neutral Light is no longer a valid indicator of the gear selection when the ECM Fuse is removed. You must manually check that the bike is in neutral before starting this test!

Indicators / Switches

MIL switch can be activated and the check engine light will illuminate on the motorcycle and on the screen

Neutral switch can be activated and the neutral light will illuminate on the motorcycle and screen

ndicators / Switches MIL Neutral		
MIL Neutral	Indicators /	Switches
	MIL	Neutral
Clutch		

The clutch switch can be activated by pressing the clutch button

Engine Speed (RPM) and Vehicle Speed (MPH)

RPM and MPH can be added to simulate engine speed and vehicle speed. Both can be seen on the screen and the speedometer

Throttle Position

The throttle position can be simulated and seen by using the ECU Data Monitor/ Simulation screen

Llutch	
Throttle Position	Throttle —
Data Simulation	28 %
On	

Odometer/ Hourmeter/ PPM

The tool is password protected and dealers will not have access to this tool function

Lamps Programmer

The Lamps Programmer is used to change or adjust the parameters for the Blinkers and the Lamps. To access the tool, go to Tools on the upper left corner. In the drop down menu, pick the Lamps Programmer tool. The following screen will pop up.

🔐 Lamps Programmer	×		
Options	-		
Blinker Reminder Warning BLINKKSENABLED			
Lamp Parameters	Blinker Parameters		
Fault Count	SO IL 10 MPH 25 S		
Time Period 10 S	<u>S</u> <u>TH</u> 40 MPH 15 S		
Program	Program		

Blinker Reminder Warning Display

The blinker reminder warning will display "BLINKR" in the speedometer when the turn signals are engaged and are within the set parameters. When the Blinker Reminder Warning is enabled, the button will illuminate green

Blinker Parameter

- SO: This is the minimum speed in which the warning will activate
- TL: This amount of time allowed prior to activating between SO and S
- S: Cross over speed for activating between TL and TH.
- TH: The amount of time allowed prior to activating when above speed S

To change the above parameter simply insert the desires values and click on the Program button

Lamp Parameters

This allows the user to change the parameters in all displayed warnings.

Fault Count: This is the amount of fault messages required in time period below

Time Period: The amount of time which is allowed for set amount of Fault Counts allowed.

To change the above parameter simply insert the desires values and click on the Program button

Resetting Factory Settings

To reprogram the Lamps Programmer to factory settings, click on Options in the upper left corner and click on Restore Default Values

🞧 Lamps Programmer	
Options	
Restore Default Values	9
BLINKR: ENABLED	
Lamp Parameters	Blinker Parameters
Fault Count	SO IL 10 MPH 25 S
Time Period 10 S	S TH 40 MPH 15 S
Program	Program

Launch BCM Software

This function is not available to Dealers